Articles

PP01 Exploring the long non-coding RNA landscape in Juvenile Myelomonocytic Leukemia

BJH - 2018, issue Abstract Book BHS, february 2018

M. Hofmans MD, PhD, T. Lammens PhD, S. Bresolin , H. Cavé , C. Flotho , H. Hasle , H. Helsmoortel PhD, M. Van den Heuvel-Eibrink , C. Niemeyer , J. Stary , N. Van Roy PhD, P. Van Vlierberghe PhD, J. Philippé MD, PhD, B. De Moerloose MD, PhD

Read more

Unravelling the biology of juvenile myelomonocytic leukaemia using transcriptomics

BJH - volume 8, issue 5, september 2017

H. Helsmoortel PhD, T. Lammens PhD, P. Van Vlierberghe PhD, B. De Moerloose MD, PhD

SUMMARY

Juvenile myelomonocytic leukaemia is a rare and aggressive blood cancer occurring in early childhood. Research in the past decades mainly focused on identifying aberrations at the DNA level. Although our molecular knowledge about juvenile myelomonocytic leukaemia biology has steadily increased over the last years, haematopoietic stem cell transplantation is currently the only curative option. Unfortunately, the relapse rate after stem cell transplantation remains high and almost half of the children do not survive the disease, indicating that new therapeutic strategies are urgently required. To further elucidate the biology of the disease, we investigated gene expression levels of both coding and non-coding RNA molecules. This led to the identification of LIN28B and its co-regulated genes as central players in juvenile myelomonocytic leukaemia biology and opens the door for the development of new targeted therapeutics.

(BELG J HEMATOL 2017;8(5):198–200)

Read more

Juvenile myelomonocytic leukaemia: the quest for more specific therapies

BJH - volume 5, issue 4, december 2014

H. Helsmoortel PhD, T. Lammens PhD, N. Van Roy PhD, J. Philippé MD, PhD, P. De Paepe MD, PhD, Y Benoit MD, PhD, F. Speleman PhD, P. Van Vlierberghe PhD, B. De Moerloose MD, PhD

Summary

Juvenile myelomonocytic leukaemia is a very rare, aggressive stem cell disorder predominantly affecting infants and young children. Current survival rates are disappointing and the only available curative therapy is haematopoietic stem cell transplantation. Over the last years, intensive research efforts elucidated a plethora of molecular aberrations involved in the pathogenesis of juvenile myelomonocytic leukaemia. Current investigations are mainly directed towards the complete unravelling of the molecular biology behind the disease in order to find more specific drugs. This review will focus on the diagnosis, genomic characterisation and the use of experimental therapies in juvenile myelomonocytic leukaemia.

(BELG J HEMATOL 2014; 5(4): 119–24)

Read more